
Flume 1.8.0 Developer Guide

Introduction

Overview

Apache Flume is a distributed, reliable, and available system for efficiently collecting, aggregating and
moving large amounts of log data from many different sources to a centralized data store.

Apache Flume is a top-level project at the Apache Software Foundation. There are currently two release
code lines available, versions 0.9.x and 1.x. This documentation applies to the 1.x codeline. For the 0.9.x
codeline, please see the Flume 0.9.x Developer Guide.

Architecture

Data flow model

An Event is a unit of data that flows through a Flume agent. The Event flows from Source to Channel to
Sink, and is represented by an implementation of the Event interface. An Event carries a payload (byte
array) that is accompanied by an optional set of headers (string attributes). A Flume agent is a process
(JVM) that hosts the components that allow Events to flow from an external source to a external
destination.

A Source consumes Events having a specific format, and those Events are delivered to the Source by an
external source like a web server. For example, an AvroSource can be used to receive Avro Events from
clients or from other Flume agents in the flow. When a Source receives an Event, it stores it into one or
more Channels. The Channel is a passive store that holds the Event until that Event is consumed by a

™

Apache
Flume™

Sink. One type of Channel available in Flume is the FileChannel which uses the local filesystem as its
backing store. A Sink is responsible for removing an Event from the Channel and putting it into an
external repository like HDFS (in the case of an HDFSEventSink) or forwarding it to the Source at the
next hop of the flow. The Source and Sink within the given agent run asynchronously with the Events
staged in the Channel.

Reliability

An Event is staged in a Flume agent’s Channel. Then it’s the Sink‘s responsibility to deliver the Event to
the next agent or terminal repository (like HDFS) in the flow. The Sink removes an Event from the
Channel only after the Event is stored into the Channel of the next agent or stored in the terminal
repository. This is how the single-hop message delivery semantics in Flume provide end-to-end reliability
of the flow. Flume uses a transactional approach to guarantee the reliable delivery of the Events. The
Sources and Sinks encapsulate the storage/retrieval of the Events in a Transaction provided by the
Channel. This ensures that the set of Events are reliably passed from point to point in the flow. In the case
of a multi-hop flow, the Sink from the previous hop and the Source of the next hop both have their
Transactions open to ensure that the Event data is safely stored in the Channel of the next hop.

Building Flume

Getting the source

Check-out the code using Git. Click here for the git repository root.

The Flume 1.x development happens under the branch “trunk” so this command line can be used:

git clone https://git-wip-us.apache.org/repos/asf/flume.git

Compile/test Flume

The Flume build is mavenized. You can compile Flume using the standard Maven commands:

1. Compile only: mvn clean compile
2. Compile and run unit tests: mvn clean test
3. Run individual test(s): mvn clean test -Dtest=<Test1>,<Test2>,... -DfailIfNoTests=false
4. Create tarball package: mvn clean install
5. Create tarball package (skip unit tests): mvn clean install -DskipTests

Please note that Flume builds requires that the Google Protocol Buffers compiler be in the path. You can
download and install it by following the instructions here.

Updating Protocol Buffer Version

File channel has a dependency on Protocol Buffer. When updating the version of Protocol Buffer used by
Flume, it is necessary to regenerate the data access classes using the protoc compiler that is part of
Protocol Buffer as follows.

1. Install the desired version of Protocol Buffer on your local machine
2. Update version of Protocol Buffer in pom.xml

3. Generate new Protocol Buffer data access classes in Flume: cd flume-ng-channels/flume-file-
channel; mvn -P compile-proto clean package -DskipTests

4. Add Apache license header to any of the generated files that are missing it
5. Rebuild and test Flume: cd ../..; mvn clean install

Developing custom components

Client

The client operates at the point of origin of events and delivers them to a Flume agent. Clients typically
operate in the process space of the application they are consuming data from. Flume currently supports
Avro, log4j, syslog, and Http POST (with a JSON body) as ways to transfer data from a external source.
Additionally, there’s an ExecSource that can consume the output of a local process as input to Flume.

It’s quite possible to have a use case where these existing options are not sufficient. In this case you can
build a custom mechanism to send data to Flume. There are two ways of achieving this. The first option is
to create a custom client that communicates with one of Flume’s existing Sources like AvroSource or
SyslogTcpSource. Here the client should convert its data into messages understood by these Flume
Sources. The other option is to write a custom Flume Source that directly talks with your existing client
application using some IPC or RPC protocol, and then converts the client data into Flume Events to be
sent downstream. Note that all events stored within the Channel of a Flume agent must exist as Flume
Events.

Client SDK

Though Flume contains a number of built-in mechanisms (i.e. Sources) to ingest data, often one wants
the ability to communicate with Flume directly from a custom application. The Flume Client SDK is a
library that enables applications to connect to Flume and send data into Flume’s data flow over RPC.

RPC client interface

An implementation of Flume’s RpcClient interface encapsulates the RPC mechanism supported by
Flume. The user’s application can simply call the Flume Client SDK’s append(Event) or
appendBatch(List<Event>) to send data and not worry about the underlying message exchange details.
The user can provide the required Event arg by either directly implementing the Event interface, by using
a convenience implementation such as the SimpleEvent class, or by using EventBuilder‘s overloaded
withBody() static helper methods.

RPC clients - Avro and Thrift

As of Flume 1.4.0, Avro is the default RPC protocol. The NettyAvroRpcClient and ThriftRpcClient
implement the RpcClient interface. The client needs to create this object with the host and port of the
target Flume agent, and can then use the RpcClient to send data into the agent. The following example
shows how to use the Flume Client SDK API within a user’s data-generating application:

import org.apache.flume.Event;
import org.apache.flume.EventDeliveryException;
import org.apache.flume.api.RpcClient;
import org.apache.flume.api.RpcClientFactory;
import org.apache.flume.event.EventBuilder;
import java.nio.charset.Charset;

The remote Flume agent needs to have an AvroSource (or a ThriftSource if you are using a Thrift client)
listening on some port. Below is an example Flume agent configuration that’s waiting for a connection
from MyApp:

a1.channels = c1
a1.sources = r1
a1.sinks = k1

a1.channels.c1.type = memory

a1.sources.r1.channels = c1
a1.sources.r1.type = avro

public class MyApp {
 public static void main(String[] args) {
 MyRpcClientFacade client = new MyRpcClientFacade();
 // Initialize client with the remote Flume agent's host and port
 client.init("host.example.org", 41414);

 // Send 10 events to the remote Flume agent. That agent should be
 // configured to listen with an AvroSource.
 String sampleData = "Hello Flume!";
 for (int i = 0; i < 10; i++) {
 client.sendDataToFlume(sampleData);
 }

 client.cleanUp();
 }
}

class MyRpcClientFacade {
 private RpcClient client;
 private String hostname;
 private int port;

 public void init(String hostname, int port) {
 // Setup the RPC connection
 this.hostname = hostname;
 this.port = port;
 this.client = RpcClientFactory.getDefaultInstance(hostname, port);
 // Use the following method to create a thrift client (instead of the above line):
 // this.client = RpcClientFactory.getThriftInstance(hostname, port);
 }

 public void sendDataToFlume(String data) {
 // Create a Flume Event object that encapsulates the sample data
 Event event = EventBuilder.withBody(data, Charset.forName("UTF-8"));

 // Send the event
 try {
 client.append(event);
 } catch (EventDeliveryException e) {
 // clean up and recreate the client
 client.close();
 client = null;
 client = RpcClientFactory.getDefaultInstance(hostname, port);
 // Use the following method to create a thrift client (instead of the above line)
 // this.client = RpcClientFactory.getThriftInstance(hostname, port);
 }
 }

 public void cleanUp() {
 // Close the RPC connection
 client.close();
 }

}

For using a thrift source set the following instead of the above line.
a1.source.r1.type = thrift
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 41414

a1.sinks.k1.channel = c1
a1.sinks.k1.type = logger

For more flexibility, the default Flume client implementations (NettyAvroRpcClient and
ThriftRpcClient) can be configured with these properties:

client.type = default (for avro) or thrift (for thrift)

hosts = h1 # default client accepts only 1 host
 # (additional hosts will be ignored)

hosts.h1 = host1.example.org:41414 # host and port must both be specified
 # (neither has a default)

batch-size = 100 # Must be >=1 (default: 100)

connect-timeout = 20000 # Must be >=1000 (default: 20000)

request-timeout = 20000 # Must be >=1000 (default: 20000)

Secure RPC client - Thrift

As of Flume 1.6.0, Thrift source and sink supports kerberos based authentication. The client needs to use
the getThriftInstance method of SecureRpcClientFactory to get hold of a SecureThriftRpcClient.
SecureThriftRpcClient extends ThriftRpcClient which implements the RpcClient interface. The
kerberos authentication module resides in flume-ng-auth module which is required in classpath, when
using the SecureRpcClientFactory. Both the client principal and the client keytab should be passed in as
parameters through the properties and they reflect the credentials of the client to authenticate against the
kerberos KDC. In addition, the server principal of the destination Thrift source to which this client is
connecting to, should also be provided. The following example shows how to use the
SecureRpcClientFactory within a user’s data-generating application:

import org.apache.flume.Event;
import org.apache.flume.EventDeliveryException;
import org.apache.flume.event.EventBuilder;
import org.apache.flume.api.SecureRpcClientFactory;
import org.apache.flume.api.RpcClientConfigurationConstants;
import org.apache.flume.api.RpcClient;
import java.nio.charset.Charset;
import java.util.Properties;

public class MyApp {
 public static void main(String[] args) {
 MySecureRpcClientFacade client = new MySecureRpcClientFacade();
 // Initialize client with the remote Flume agent's host, port
 Properties props = new Properties();
 props.setProperty(RpcClientConfigurationConstants.CONFIG_CLIENT_TYPE, "thrift");
 props.setProperty("hosts", "h1");
 props.setProperty("hosts.h1", "client.example.org"+":"+ String.valueOf(41414));

 // Initialize client with the kerberos authentication related properties
 props.setProperty("kerberos", "true");
 props.setProperty("client-principal", "flumeclient/client.example.org@EXAMPLE.ORG")
 props.setProperty("client-keytab", "/tmp/flumeclient.keytab");
 props.setProperty("server-principal", "flume/server.example.org@EXAMPLE.ORG");
 client.init(props);

The remote ThriftSource should be started in kerberos mode. Below is an example Flume agent
configuration that’s waiting for a connection from MyApp:

a1.channels = c1
a1.sources = r1
a1.sinks = k1

a1.channels.c1.type = memory

a1.sources.r1.channels = c1
a1.sources.r1.type = thrift
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 41414
a1.sources.r1.kerberos = true
a1.sources.r1.agent-principal = flume/server.example.org@EXAMPLE.ORG
a1.sources.r1.agent-keytab = /tmp/flume.keytab

a1.sinks.k1.channel = c1
a1.sinks.k1.type = logger

Failover Client

 // Send 10 events to the remote Flume agent. That agent should be
 // configured to listen with an AvroSource.
 String sampleData = "Hello Flume!";
 for (int i = 0; i < 10; i++) {
 client.sendDataToFlume(sampleData);
 }

 client.cleanUp();
 }
}

class MySecureRpcClientFacade {
 private RpcClient client;
 private Properties properties;

 public void init(Properties properties) {
 // Setup the RPC connection
 this.properties = properties;
 // Create the ThriftSecureRpcClient instance by using SecureRpcClientFactory
 this.client = SecureRpcClientFactory.getThriftInstance(properties);
 }

 public void sendDataToFlume(String data) {
 // Create a Flume Event object that encapsulates the sample data
 Event event = EventBuilder.withBody(data, Charset.forName("UTF-8"));

 // Send the event
 try {
 client.append(event);
 } catch (EventDeliveryException e) {
 // clean up and recreate the client
 client.close();
 client = null;
 client = SecureRpcClientFactory.getThriftInstance(properties);
 }
 }

 public void cleanUp() {
 // Close the RPC connection
 client.close();
 }
}

This class wraps the default Avro RPC client to provide failover handling capability to clients. This takes
a whitespace-separated list of <host>:<port> representing the Flume agents that make-up a failover
group. The Failover RPC Client currently does not support thrift. If there’s a communication error with
the currently selected host (i.e. agent) agent, then the failover client automatically fails-over to the next
host in the list. For example:

// Setup properties for the failover
Properties props = new Properties();
props.put("client.type", "default_failover");

// List of hosts (space-separated list of user-chosen host aliases)
props.put("hosts", "h1 h2 h3");

// host/port pair for each host alias
String host1 = "host1.example.org:41414";
String host2 = "host2.example.org:41414";
String host3 = "host3.example.org:41414";
props.put("hosts.h1", host1);
props.put("hosts.h2", host2);
props.put("hosts.h3", host3);

// create the client with failover properties
RpcClient client = RpcClientFactory.getInstance(props);

For more flexibility, the failover Flume client implementation (FailoverRpcClient) can be configured
with these properties:

client.type = default_failover

hosts = h1 h2 h3 # at least one is required, but 2 or
 # more makes better sense

hosts.h1 = host1.example.org:41414

hosts.h2 = host2.example.org:41414

hosts.h3 = host3.example.org:41414

max-attempts = 3 # Must be >=0 (default: number of hosts
 # specified, 3 in this case). A '0'
 # value doesn't make much sense because
 # it will just cause an append call to
 # immmediately fail. A '1' value means
 # that the failover client will try only
 # once to send the Event, and if it
 # fails then there will be no failover
 # to a second client, so this value
 # causes the failover client to
 # degenerate into just a default client.
 # It makes sense to set this value to at
 # least the number of hosts that you
 # specified.

batch-size = 100 # Must be >=1 (default: 100)

connect-timeout = 20000 # Must be >=1000 (default: 20000)

request-timeout = 20000 # Must be >=1000 (default: 20000)

LoadBalancing RPC client

The Flume Client SDK also supports an RpcClient which load-balances among multiple hosts. This type
of client takes a whitespace-separated list of <host>:<port> representing the Flume agents that make-up a

load-balancing group. This client can be configured with a load balancing strategy that either randomly
selects one of the configured hosts, or selects a host in a round-robin fashion. You can also specify your
own custom class that implements the LoadBalancingRpcClient$HostSelector interface so that a custom
selection order is used. In that case, the FQCN of the custom class needs to be specified as the value of
the host-selector property. The LoadBalancing RPC Client currently does not support thrift.

If backoff is enabled then the client will temporarily blacklist hosts that fail, causing them to be excluded
from being selected as a failover host until a given timeout. When the timeout elapses, if the host is still
unresponsive then this is considered a sequential failure, and the timeout is increased exponentially to
avoid potentially getting stuck in long waits on unresponsive hosts.

The maximum backoff time can be configured by setting maxBackoff (in milliseconds). The maxBackoff
default is 30 seconds (specified in the OrderSelector class that’s the superclass of both load balancing
strategies). The backoff timeout will increase exponentially with each sequential failure up to the
maximum possible backoff timeout. The maximum possible backoff is limited to 65536 seconds (about
18.2 hours). For example:

// Setup properties for the load balancing
Properties props = new Properties();
props.put("client.type", "default_loadbalance");

// List of hosts (space-separated list of user-chosen host aliases)
props.put("hosts", "h1 h2 h3");

// host/port pair for each host alias
String host1 = "host1.example.org:41414";
String host2 = "host2.example.org:41414";
String host3 = "host3.example.org:41414";
props.put("hosts.h1", host1);
props.put("hosts.h2", host2);
props.put("hosts.h3", host3);

props.put("host-selector", "random"); // For random host selection
// props.put("host-selector", "round_robin"); // For round-robin host
// // selection
props.put("backoff", "true"); // Disabled by default.

props.put("maxBackoff", "10000"); // Defaults 0, which effectively
 // becomes 30000 ms

// Create the client with load balancing properties
RpcClient client = RpcClientFactory.getInstance(props);

For more flexibility, the load-balancing Flume client implementation (LoadBalancingRpcClient) can be
configured with these properties:

client.type = default_loadbalance

hosts = h1 h2 h3 # At least 2 hosts are required

hosts.h1 = host1.example.org:41414

hosts.h2 = host2.example.org:41414

hosts.h3 = host3.example.org:41414

backoff = false # Specifies whether the client should
 # back-off from (i.e. temporarily
 # blacklist) a failed host
 # (default: false).

maxBackoff = 0 # Max timeout in millis that a will

 # remain inactive due to a previous
 # failure with that host (default: 0,
 # which effectively becomes 30000)

host-selector = round_robin # The host selection strategy used
 # when load-balancing among hosts
 # (default: round_robin).
 # Other values are include "random"
 # or the FQCN of a custom class
 # that implements
 # LoadBalancingRpcClient$HostSelector

batch-size = 100 # Must be >=1 (default: 100)

connect-timeout = 20000 # Must be >=1000 (default: 20000)

request-timeout = 20000 # Must be >=1000 (default: 20000)

Embedded agent

Flume has an embedded agent api which allows users to embed an agent in their application. This agent is

meant to be lightweight and as such not all sources, sinks, and channels are allowed. Specifically the

source used is a special embedded source and events should be send to the source via the put, putAll

methods on the EmbeddedAgent object. Only File Channel and Memory Channel are allowed as channels

while Avro Sink is the only supported sink. Interceptors are also supported by the embedded agent.

Note: The embedded agent has a dependency on hadoop-core.jar.

Configuration of an Embedded Agent is similar to configuration of a full Agent. The following is an

exhaustive list of configration options:

Required properties are in bold.

Property Name Default Description
source.type embedded The only available source is the embedded source.

channel.type – Either memory or file which correspond to MemoryChannel and

FileChannel respectively.

channel.* – Configuration options for the channel type requested, see

MemoryChannel or FileChannel user guide for an exhaustive

list.

sinks – List of sink names

sink.type – Property name must match a name in the list of sinks. Value must

be avro

sink.* – Configuration options for the sink. See AvroSink user guide for

an exhaustive list, however note AvroSink requires at least

hostname and port.

processor.type – Either failover or load_balance which correspond to

FailoverSinksProcessor and LoadBalancingSinkProcessor

respectively.

processor.* – Configuration options for the sink processor selected. See

FailoverSinksProcessor and LoadBalancingSinkProcessor user

guide for an exhaustive list.

source.interceptors – Space-separated list of interceptors

source.interceptors.* – Configuration options for individual interceptors specified in the

source.interceptors property

Below is an example of how to use the agent:

Map<String, String> properties = new HashMap<String, String>();
properties.put("channel.type", "memory");
properties.put("channel.capacity", "200");
properties.put("sinks", "sink1 sink2");
properties.put("sink1.type", "avro");
properties.put("sink2.type", "avro");
properties.put("sink1.hostname", "collector1.apache.org");
properties.put("sink1.port", "5564");
properties.put("sink2.hostname", "collector2.apache.org");
properties.put("sink2.port", "5565");
properties.put("processor.type", "load_balance");
properties.put("source.interceptors", "i1");
properties.put("source.interceptors.i1.type", "static");
properties.put("source.interceptors.i1.key", "key1");
properties.put("source.interceptors.i1.value", "value1");

EmbeddedAgent agent = new EmbeddedAgent("myagent");

agent.configure(properties);
agent.start();

List<Event> events = Lists.newArrayList();

events.add(event);
events.add(event);
events.add(event);
events.add(event);

agent.putAll(events);

...

agent.stop();

Transaction interface

The Transaction interface is the basis of reliability for Flume. All the major components (ie. Sources,
Sinks and Channels) must use a Flume Transaction.

A Transaction is implemented within a Channel implementation. Each Source and Sink that is
connected to a Channel must obtain a Transaction object. The Sources use a ChannelProcessor to
manage the Transactions, the Sinks manage them explicitly via their configured Channel. The operation

to stage an Event (put it into a Channel) or extract an Event (take it out of a Channel) is done inside an

active Transaction. For example:

Channel ch = new MemoryChannel();
Transaction txn = ch.getTransaction();
txn.begin();
try {
 // This try clause includes whatever Channel operations you want to do

 Event eventToStage = EventBuilder.withBody("Hello Flume!",
 Charset.forName("UTF-8"));
 ch.put(eventToStage);
 // Event takenEvent = ch.take();
 // ...
 txn.commit();
} catch (Throwable t) {
 txn.rollback();

 // Log exception, handle individual exceptions as needed

 // re-throw all Errors
 if (t instanceof Error) {
 throw (Error)t;
 }
} finally {
 txn.close();
}

Here we get hold of a Transaction from a Channel. After begin() returns, the Transaction is now

active/open and the Event is then put into the Channel. If the put is successful, then the Transaction is

committed and closed.

Sink

The purpose of a Sink to extract Events from the Channel and forward them to the next Flume Agent in

the flow or store them in an external repository. A Sink is associated with exactly one Channels, as

configured in the Flume properties file. There’s one SinkRunner instance associated with every configured

Sink, and when the Flume framework calls SinkRunner.start(), a new thread is created to drive the

Sink (using SinkRunner.PollingRunner as the thread’s Runnable). This thread manages the Sink’s

lifecycle. The Sink needs to implement the start() and stop() methods that are part of the

LifecycleAware interface. The Sink.start() method should initialize the Sink and bring it to a state

where it can forward the Events to its next destination. The Sink.process() method should do the core

processing of extracting the Event from the Channel and forwarding it. The Sink.stop() method should

do the necessary cleanup (e.g. releasing resources). The Sink implementation also needs to implement the

Configurable interface for processing its own configuration settings. For example:

public class MySink extends AbstractSink implements Configurable {
 private String myProp;

 @Override
 public void configure(Context context) {
 String myProp = context.getString("myProp", "defaultValue");

 // Process the myProp value (e.g. validation)

 // Store myProp for later retrieval by process() method
 this.myProp = myProp;
 }

 @Override

 public void start() {
 // Initialize the connection to the external repository (e.g. HDFS) that

 // this Sink will forward Events to ..

 }

 @Override

 public void stop () {
 // Disconnect from the external respository and do any

 // additional cleanup (e.g. releasing resources or nulling-out

 // field values) ..

 }

 @Override

 public Status process() throws EventDeliveryException {
 Status status = null;

 // Start transaction

 Channel ch = getChannel();
 Transaction txn = ch.getTransaction();
 txn.begin();
 try {
 // This try clause includes whatever Channel operations you want to do

 Event event = ch.take();

 // Send the Event to the external repository.

 // storeSomeData(e);

 txn.commit();
 status = Status.READY;
 } catch (Throwable t) {
 txn.rollback();

 // Log exception, handle individual exceptions as needed

 status = Status.BACKOFF;

 // re-throw all Errors

 if (t instanceof Error) {
 throw (Error)t;
 }
 }
 return status;
 }
}

Source

The purpose of a Source is to receive data from an external client and store it into the configured
Channels. A Source can get an instance of its own ChannelProcessor to process an Event, commited
within a Channel local transaction, in serial. In the case of an exception, required Channels will propagate
the exception, all Channels will rollback their transaction, but events processed previously on other
Channels will remain committed.

Similar to the SinkRunner.PollingRunner Runnable, there’s a PollingRunner Runnable that executes on
a thread created when the Flume framework calls PollableSourceRunner.start(). Each configured
PollableSource is associated with its own thread that runs a PollingRunner. This thread manages the
PollableSource’s lifecycle, such as starting and stopping. A PollableSource implementation must
implement the start() and stop() methods that are declared in the LifecycleAware interface. The
runner of a PollableSource invokes that Source‘s process() method. The process() method should
check for new data and store it into the Channel as Flume Events.

Note that there are actually two types of Sources. The PollableSource was already mentioned. The other
is the EventDrivenSource. The EventDrivenSource, unlike the PollableSource, must have its own
callback mechanism that captures the new data and stores it into the Channel. The EventDrivenSources
are not each driven by their own thread like the PollableSources are. Below is an example of a custom
PollableSource:

Channel

TBD

public class MySource extends AbstractSource implements Configurable, PollableSource {
 private String myProp;

 @Override

 public void configure(Context context) {
 String myProp = context.getString("myProp", "defaultValue");

 // Process the myProp value (e.g. validation, convert to another type, ...)

 // Store myProp for later retrieval by process() method
 this.myProp = myProp;
 }

 @Override

 public void start() {
 // Initialize the connection to the external client
 }

 @Override

 public void stop () {
 // Disconnect from external client and do any additional cleanup
 // (e.g. releasing resources or nulling-out field values) ..
 }

 @Override

 public Status process() throws EventDeliveryException {
 Status status = null;

 try {
 // This try clause includes whatever Channel/Event operations you want to do

 // Receive new data
 Event e = getSomeData();

 // Store the Event into this Source's associated Channel(s)
 getChannelProcessor().processEvent(e);

 status = Status.READY;
 } catch (Throwable t) {
 // Log exception, handle individual exceptions as needed

 status = Status.BACKOFF;

 // re-throw all Errors
 if (t instanceof Error) {
 throw (Error)t;
 }
 } finally {
 txn.close();
 }
 return status;
 }
}

